Similarity Measurement of Metadata of Geospatial Data: An Artificial Neural Network Approach
نویسندگان
چکیده
To help users discover the most relevant spatial datasets in the ever-growing global spatial data infrastructures (SDIs), a number of similarity measures of geospatial data based on metadata have been proposed. Researchers have assessed the similarity of geospatial data according to one or more characteristics of the geospatial data. They created different similarity algorithms for each of the selected characteristics and then combined these elementary similarities to the overall similarity of the geospatial data. The existing combination methods are mainly linear and may not be the most accurate. This paper reports our experiences in attempting to learn the optimal non-linear similarity integration functions, from the knowledge of experts, using an artificial neural network. First, a multiple-layer feed forward neural network (MLFFN) was created. Then, the intrinsic characteristics were used to represent the metadata of geospatial data and the similarity algorithms for each of the intrinsic characteristics were built. The training and evaluation data of MLFFN were derived from the knowledge of domain experts. Finally, the MLFFN was trained, evaluated, and compared with traditional linear combination methods, which was mainly a weighted sum. The results show that our method outperformed the existing methods in terms of precision. Moreover, we found that the combination of elementary similarities of experts to the overall similarity of geospatial data was not linear.
منابع مشابه
Similarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملAn integrated data envelopment analysis–artificial neural network approach for benchmarking of bank branches
Efficiency and quality of services are crucial to today’s banking industries. The competition in this section has become increasingly intense, as a result of fast improvements in Technology. Therefore, performance analysis of the banking sectors attracts more attention these days. Even though data envelopment analysis (DEA) is a pioneer approach in the literature as of an efficiency measurement...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملIntelligent identification of vehicle’s dynamics based on local model network
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...
متن کامل